White Paper

Automated Workload Transformation to Cloud: The Future-proof Approach

Enterprises have been dependent on traditional data warehouses to ingest, model, and store data for ages. In a typical IT environment, conventional data warehouses would extract, transform, and load (ETL) jobs to process data in batches. However, handling millions of queries per month comes at a considerable cost. Blending exabytes of data from various historical and streaming sources such as internal data across spreadsheets, third-party data, and data stores also makes business analysis difficult and time-consuming.

As businesses explore options to shift from traditional data warehouses to meet their demands and scale business operations, cloud platforms have gained popularity. Whether it is public, private, or hybrid, enterprises are continuing to move their workloads and applications to the cloud infrastructure. Gartner predicts that more than 50 percent of organizations using the cloud today will have all their workloads in the cloud by 2021.

Enterprises will no longer lift-and-shift into the cloud but will instead refactor and rebuild directly in the cloud. While enterprises might retain some mission-critical workloads on-premise, most enterprise data will be in the cloud.

In this white paper, we explore:

  • Reasons to move to the cloud
  • Challenges of cloud adoption
  • Steps to move to the cloud
  • How to manage the transformation

Read the white paper to learn more.

    By submitting this form you agree to have read the privacy policy and receive our emails.